
ROTATION AND TRANSLATION OF OBJECTS
REPRESENTED BY OCTREES

T#ai-Hong Hong and Michael 0. Shneiert

Sensory -Interactive Robotica Group
National Bureau of Standards

Gaithemburg, MD 20899

ABSTRACT

This paper describes an algorithm for per-
forming arbitrary translations and rotations of
objects represented by octrees. Given an octree
in a standard position and a transformation,
the algorithm builds a new tree in a top down
fshion, visiting each node in the new tree only
once, and constructing only those nodes that
appear in the final tree. It works by projecting
the transformed space over the original tree,
and labeling the new nodes according to the
labels of the nodes in the underlying
untransformed tree.

1. Introduction

Octrees are finding applications in a number of
are- of computer graphics and robot vision because of
the ease with which certain operations can be per-
formed (for example, rendering and hidden surface
removal in graphics 13, 5, 81, and collision avoidance
and path planning in robotics(2, 6, 101). The advan-
tages of the octree arise because it is a t r u e volumetric
representation, and yet can be stored in a compact
form.

An octree 17, 8) is a recursive decomposition of a
cubic space Into subcubcs. Initially, the whole space is
represented by a single node in the tree, called the
root node. If the cubic volume is homogeneous (full or
empty), then the root is not decomposed at all, and
comprises the complete description of the space. Oth-
erwise, it is split into eight equal subcubes (octants),
which become the children of the root. This process
continua until all the nodes are homogeneous, or until
some resolution limit is reached. Nodes corresponding
to cubic regions that are completely full are called
object (or full) leaf nodes. Nodes corresponding to
empty regions are called background (or empty) leaf

' Current addres: Philips Laboratories,
345 Scarborough Road, Briarelis Manor,
NY 1OslO.

nodes, and nodes corresponding to mixed regions
(non-leaf nodes) are called non-terminal (or gray)
nodes.

The octree has advantages over other volumetric
representations because of the speed with which
volume elements can be located and their relative
poeitions established. Octrees, however, suffer from
two major disadvantages. First, they do not provide
an exact representation for objects, and, Second, the
sire of the tree representing an object depends criti -
cally on the position of the object in the space. Thus,
translating or rotating an object can dramatically
increase OT decrease the size of the tree. This paper
provides an algwithm for computing such a new octree
resulting from an arbitrary translation and rotation of
an initial tree (ar tmcs), which attempts to minimize

For static objects, a compact representation can
be constructed by choosing a favorable orientation
and origin for the object when building the tree. It is
advantageous to use such a representation in the a l p
rithm, because the computation time depends on the
size of the source tree. Because of the finite resolution
of the octree representation, a transformation that
moves and reorients an object is not guaranteed to
preserve the shape of the object exactly. Successive
transformations will, in general, deform the shape
more and more. It is thus preferable to maintain a
single, msster tree to represent the object, and to per-
form all transformations on that tree. Successive
transformations a r e then performed by keeping track
of the current position of the object, and constructing
a new transformation aa the c ~ ~ p ~ ~ ~ ~ o ~of this posi-
tion and the desired motion. Applying the new
transformation to the master tree each time minimizes
the errors introduced into the new tree [2]).

Nevertheless, errors are introduced into the new
tree, and must be controlled. The errors manifest
themselves as fluctuations in the shape of the boun-
dary of the object. These should be kept as small as
possible, and their cumulative effect on the volume of
the object should be bounded. The transformation
must also maintain the topology of the object. That
is, holes should not be introduced or filled in, and the
object should not become disconnected. Meeting these
constraints requires significant computation. To

t

achieve reasonable performance, the algorithm first
applies a set of fast tests to weed out simple cases,
and then applies a complete screening to those nodes
that remain.

The next section describes the algorithm. It is fol-
lowed by a discussion. examples of the implementa -
tion, and conclusions.

2. The Algorithm

The goal of the algorithm is to take an original,
master octree and an arbitrary translation and rota-
tion (expressed 85 a homogeneous matrix in our imple-
mentation) and to produce a new, transformed, octree
that represents the result of applying the transforma -
tion to the master octree.

The master octm is oriented parallel to the coor -
dinate axes. Thii implies that all the delimiting sur-
faces of cubes and subcubea are described by simple
equations. The transformed tree may have arbitrarily
oriented cubes with respect to the master tree. These
cubes must, however, be mapped back into a tree with
cubes parallel to the coordinate axes. In this respect,
the problem is similar to that of geometric correction
of images [e].

The algorithm nlim on the
transforming an object by some trans
duces the same representation as
underlying coordinate system by K’. It performs
thii invene transformation on a new mat cube,
expressing the transfw-med octree in the same coordi -
nate system as the mmter
superimpased on t h mt
the new tree is constructed
new nodes by testing the
volumes with which they
octree. The algorithm constructs only those nodes
that are needed for the final representation, and no
coalescing of intermediate nodes is required. At the
highest mclution in the tree (lowest level), special
processing is carried out for partially filled cubes.

For every node, the algorithm attempts to set two
flags, one for an intersection with the background, and
one for intenaction with an object. Lf, at any time,
both flags a n set, the node can immediately be split,
without looking at any further
lowest level, when no splitting
straint is used to restr ict the n
ined at each stage. Once one of
no further nodes of that type will be examined. A
second constraint restricts the nodes to be examined
to those whose volumes in the master tree overlap the
new node, that is, only neighboring nodes or parents
can affect the value assigned to a flag. Nodes that
meet these constraints are called qualifying nodes or
cubes.

In the following algorithm, the untransformed
octree is referred to as the master octree. Nodes in the
tree are referred to as cubes when their volumes or
surfaces are being discussed. Given a translation and

rotation defined by a homogeneous matrix, and a mas-
ter octree to be transformed, the process works as fol-
lows.

1.

2.

3.

4.

Construct a new root for the transformed tree by
applying the invent of the given transformation
to the set of planes defining the root cube of the
master octree. The invem is guaranteed to exist
because the transformation is a rigid body
motion. There a n six planes to be transformed,

u1 ~ + b1~+e l*+d,’lO

66z+b6$f+C6Z+d@

(where, in the master tree, all but one of the
ui,bi,ei, are 0 in each equation). Each plane is
transformed to give the new sides of the
transformed cube. Note that the children of this
cube have surface equations that are simply com-
puted as known 05ets from these planes (i.e.,
only the values of dl,...d6 change.

We want to establish that the transformed cube
i n t e m c t s only with empty nodes, in which case
it is empty, or that it intemects only with full
nodes, in which case it is full. Otherwise, the
cube must be subdivided. We start by examining
the vertices of the transformed cube. I f any ver-
tex is outside the root node of the master octree,
then the transformed tree is said to intersect with
the background by definition (we consider the
region surrounding the actree to be empty - if this
is not appropriate for a particular application,
only miner changes to the algorithm will result).
If we can establish that the cube also intersects
with an object node, we can immediately subdi-
vide it, and recursively examine its children in the
same way. If at least one vertex is inside the mas-
ter octree, and one is outside, the transformed
tree is immediately subdivided. The tests
described below arc performed on all children
(and on the toot of the transformed tree if it is
not yet subdivided). For each child. the tests
always begin with the root of the master octree,
and work down the appropriate subtrees.

For each qualifying cube at a given resolution
level in the master tree (initially the mot cube),
find the centers of the master cube and the
transformed cube (in the master coordinate
frame). Compute the radii of the inscribed
spheres for each cube, and of their enclosing
spheres. Find the smaller of the cubes, and see if
i t s center is inside the larger cube. If i t is, they
intersect (Figure 1).

If the distance between the centers of the cubes is
less than the sum of the radii of the inscribed
spheres. then the cubes intersect (Figure 2). If
the distance is greater than the sum of the radii

3

5.

6.

3.

of the enclosing spheres, the cubes do not inter-
sect (Figure 3). Otherwise, the intersection region
lies in the shell between the two spheres (Figure
4), and a more detailed examination must be
made to determine whether or not the cubes
intersect. This is done as follows.

Intersect each edge in the master cube with each
surface in the transformed cube. The intersection
tests are easy because each edge is parallel to one
of the three coordinate axes. Any intersection
must l ie both within the area bounded by the
edges of the surface and within the endpoints of
the edge not including the endpoints themselves
(Figure 5). The endpoints are excluded because,
for an intersection, the edge8 are required to
pierce the surface rather than simply touch it.
The same intersection testa must be done using
the edges from the transformed cube and the sur-
faces from the msster cube to account for cases
such m that in Figure 6. In thii case, as opposcd
to the previous one, the surface equations are
simple, while the edge equations are not.
If a cube intemects with an empty node, a flag for
empty intersection is set. Lf it intersects with a
full node, thii is also flagged. If both flags are set,
the cube can immediately be split, and its chil-
dren recumively tested, because the node cannot
be a leaf node. A node that totally contains R
gray node ~ a h split. I f only one flag is set at
any resolution level, after examining all qualifying
nodes at that level, the new node is a leaf node of
the appropriate type.
At the loweat level in the tree (highest resolution)
nodes that are not homogeneous require special
treatment. W e compute an estimate of the
amount of the total volume of the node that is
occupied by the object. This can be thmholded,
or kept for later processing. The estimate is com-
puted by artificially subdividing the nodes into 8
regions. The center of each resulting cube is
transformed and, if it falls within a full node in
the master tree, the subcube is said to be full. A
count of the number of full subcubes is used as an
estimate of the occupied volume of the terminal
cubes. In the examples presented below, this
value was thresholded to decide whether or not
the node should be displayed.

Discussion
For each node in the new tree, the algorithm

traverses a subtree of the mmter tree to the level of
the new node. As soon as the node is found to inter-
sect with both a background and an object node, the
node is split, a new gray node is created, and the a l p
rithm is repeated on the children. Only in the case
that the node is a leaf is a complete traversal of the
subtree required to the level in the master tree at

which the new node overlays only nodes of one color.
In this case, no children are generated. We note that
child nodes need only be intersected with nodes in the
master tree starting at the level of their parents,
because the decision to split the parent implies that
the necessary information for labelling its children lies
below it in the tree. Thus, for each new node in the
transformed tree, a narrow cone is examined, starting
at the parent level, and ending at the level at which
the label of the node is determined (possibly the
highest resolution level in the master tree). The
breadth of the cone is limited to the set of nodes in
the master tree that intersect the new node’s volume
(in practice, the parent node, its neighbors, and their
descendents).

Weng and Ahuja [ll]describe an algorithm to
perform arbitrary rotations and translations on octrees
that works in a manner diflerent from the one we
describe here. Their approach is to project the object
nodes in the master tree into the new tree, and to con-
struct the necessary new nodes by traveming the new
tree. While their approach has the same computa-
tional complexity as ours (described below), it suffeen
from some disadvantages. These arise because of the
local nature of projecting the individual object nodes,
as opposed to the global projection of the new tree
over the old. Each object node projected into the new
tree interacts only with the partially constructed new
tree. As a result, it is possible for subtrees to be gen-
erated that will later be merged into leaf nodes when
adjacent object nodes are projected. These subtrees
may have to be traversed many times before finally
being deleted. In contrast, our method never creates
extra nodes, and traverses the master tree, which is
usually compact, and contains all the necessary infor-
mation for informed decisions.

The local nature of Weng and Ahuja’s approach
also affects the treatment of partially filled nodes at
the highest resolution level. Their approach is to
declare a node to be an object leaf i f its centroid is
inside or on the boundary of a projected object node.
If two adjacent projected nodes that do not meet this
condition would nevertheless together fill the new
node, this cannot be taken into account. Our method
computes the label for the node based on the percen -
tage of the node that is full, from whatever source.
This has a small practical benefit due to potential
inaccuracies arising from arithmetic roundoff errom in
the projection computations, which might perturb the
boundary of a node enough to place the centroid out-
side two projecting nodes, which together cover the
new node.

Other previous work has dealt with special cases
of the transformation problem. Several authors have
treated the caSe of pure translation and rotations by
multiples of 90 degrees (1, 4, 7, 81. The reason for
these restrictions has been the desire to maintain an
exact representation. Arbitrary transformations suffer
from a disadvantage, in that applying their inverse

does not necessarily result in the original octree. I f a
sequence of transformations is to be applied, for exam-
ple, in moving an object through a region of space,
something must be done-to prevent the shape of the
object from changing radically as the transformations
are applied. Our solution, and that of Boaz and Roach
121, and Weng and Ahuja 1111, has been to maintain a
cumulative transformation from a standard position,
and always perform the resultant transformation on a
standard representation of the object. Thii reduces
the errors to those incurred in constructing the cumu-
lative transformation, which gives rise to an error in
pition, rather than one in shape. Because of Boating
point arithmetic, this has, in general, a much smaller
effect on the raults than successive transformations
would have if applied directly - to successive octrea,
which are de0ned in a discrete space.

Dealing with the limited resolution is the major
di5culty with the octree representation. For some
applications, such as robot path planning, it is desir-
able to declare all highest resolution leaf nodes to be
full if they intenect with any part of an object. This
is less costly than the appmach taken by Boaz and
Roach 121, in which a shell of nodes around each
object node is projected into the octree, and interne-
tions with these are considered to be filled. Care must
be taken in other applications, such as rendering of
fine line features, that lines are not

The complexity analysis of the PlgDrithm can be
sketched by analogy with that of Weat and Ahuja as
follows. L e t n be the side length of the master mot
cube. Then the depth of the tm is O(logn). L e t K be
the number of nodes in the new tree. In generating the
new tree, we might at worst hare to tfsveme the mas-
te r tree to its full depth for tach new d e created,
requiring O(4'W') operations, (see [Ill).Under the
assumption that the number of black nodes at a level
in the tree is proportional to the total number of
noda pauible at that level, it follows by analogy with
the algorithm of Weng and Ahuja (111that the aver-
age time complexity of the algorithm is bounded by
O(K1ogn).

4. Implementation

The algorithm was implemented in the "C" p m
gramming language on a VAX-11/780 computer. Mas-
t e r octrees were built for a number of simple objects.
No effort WBS made to construct the most compact
possible master trees, but the largess sdacm of the
objects were aligned with the coordinate axes of the
space (except in the case of the cylinder, where this is
not possible). Figures 7, 8, and 9 show the results of
several experiments. In each image, three views of an
object are shown, projected into the same octree. The
transformations used are shown in Figure 10. Note
that the final octree represents the projection all three
instances of the object, and is not a compasite image
constructed from three trees for display purposes. The
times given in Table I are for the total construction of

the complete tree (all three objects). They are in CPU
seconds on a loaded VAX. It is clear that in some
cases, many more nodes are required to represent the
objects in their new positions than in the master tree,
and that most of the new nodes appear at the boun-
daries of the objects. For all the objects, nodes at the
highest resolution are displayed as object nodes if they
were half or more filled after transformation.

6. Conclusiona

An algorithm has been described for performing
arbitrary rotations and translations on objects
represented as octrees. The algorithm constructs only
those nodes that appear in the final tree, and makes
decisions shut splitting nodes at the highest possible
level. By travtming the m w t e r tree instead of the
transformed tree, advantage can be taken of compact
coding of that tree. The algorithm attempts to minim-
ize errors in the transformation by always working
from the master tree, and maintains the topology of
objects to the limit of its resolution.

Referencea

1.

2.

3.

4.

5.

8.

7.

N. Ahuja and C. Nash, Octree representation of
moving objects. Computer Vision, Graphics. and
Image Processing 26, 1884, 207-216.

M. Boaz and J. Roach, h oct-tree representation
for three-dimensional motion and collision detec-
tion. Virginia Polytechnic Institute and State
University, Technical Report, June 1084.

L. J. Doctor and J. G. Torborg, Display tech-
niques for octree-encoded objects. ZEEE Com-
puter Crapliiu m d Applicationa 1 3, July 1981.2838.
C. R. Dyer, A quadtree translation algorithm.
Computer Science Technical Report, University of
Wisconsin, Madiin, August, 1984.

*

tr, Space subdivision for fast ray
tracing. LEEE Computer Graphics and Appliea -
tww 4 10, October 1984, 15-22.

M. Herman, Fast, threedimensional collision -free
motion planning. Robot Systems Division,
National Bureau of Standards, 1985.

C. L. Jackins and S. L. Tanimoto, Oct-trees and
their use in representing three-dimensional
objects. Computer Graphics and Image Processing
14, 1980,244270.

5

8. D. Meagher, Geometric modeling using octree
encoding. Computer Graphia and Image Process -
ing ZQ, 1982, 129-147.

9. A. R. Rosenfeld and A. C. Kak; Digital Picture
Processing, Second Edition, Volume 2, Academic
Press, New York, 1982.

10. R. Ruff and N. Ahuja, Path planning in a three
dimensional environment. Proc. 7th ICPR, Mont-
real, Canada, July 1984, 188-191. .

11. J. Weng and N. Ahuja, Octne representation of
objects in arbitrary motion. Pmc. CVPR, San
Francisco, CA, 1985,524529.

Figuro 1. If the center of the smaller cube is
within the larger cube, the cubes intencct.

Figure 2. When the distance between the
centen of the cubes is less than the sum of the
radii of the inscribed spheres, the cub- intersect.

@

c9 -- "'

Figure 3. When the distance between the
centers of the cubes is greater than the sum of
the radii of the enclosing spheres, the cubes do
not intersect.

Figure 4. W h e n the intemection region lies in
the shell between the two spheres, more detailed
examination is required before the cubes can be
said to intersect.

Figure 5. When an edge of a node in the master
tree (small node) intersects a surface in the
transformed tree, the transformed node must be
split.

Figure 6. Even if no edge in the node from the
master tree intersects a surface in the
transformed tree, the nodes can intersect.

,/'
/

I

/'

L

Figure 7. Three views of a rectangular paral -
lelepiped (box) projected into the same octree.
The transformations are Ti,T2,andT3 from Figure
10. For the display, the tree was expanded t.o
level 6.

Figure 8. Three v i e w of an Gshape projected
into the same octm. The transformations are
T1,T4,andTg from Figure 10. For the diiplay, the
tree waa expanded to level 6.

1

1 0 0 0

Object

O l O O /0 0 1 0

Nodes in Nodes in Time For Time Per

o o o q

(Transformation)

1 0 0 270
0 P 0 256
0 0 1 0
0 0 0 1

Master Tree Transformed Tree Transformation Node

0 0.7071 0.7071 0
-1 0 0 3 8 4
0 -0.7071 0.7071 384
0 0 0 1

box (T1BT#Tq
Lshape (T,8T,&T6)

1 0 0 258
0 1 0 270
0 0 1 0
0 0 0 1

25 545 6.25 0.011
25. 713 8.05 0.011

cylinder IT,BT.8TI,

0 0 1 0
0 1 0 258
-1 0 0 384
0 0 0 1

Q69 2233 127.4 0.057

Figure 9. Three views of a cylinder projected
into the same octne. The transformations are
T,,T,,andTb from Figure 10. For the diiplay, the
tree was expanded to level 7.

Figure 10. The homogeneous transformations
w d for the examples of Figure 7, 8, and 9. From
top to bottom. they are T,.T2.T3,T4,T~,Tp

TableI.
Examples of the times required for transforming various objects.

